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Abstract

A transition probability function P is said to be stochastically monotone

if P(x,(--,y]) is non-increasing in x for every fixed y. A (non-homoaeneous)

Markov chain or process is said to be stochastically monotone if its transition

probability functions are stochastically monotone. Diffusions, random walks,

birth-and-death and branching processes are examples of such models. It is

shown that stochastically monotone processes exhibit two basic types of

asymptotic behaviour. Chains with stationary transition probabilities display

a cyclic pattern, and a suitably normed and centered chain turns out to converge

almost surely if it is geometrically growing. Applications to diffusions and

branching processes are added.
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1. Introduction and Summary. We shall start off by considering two examples

of stochastically monotone (SM) sequences exhibiting rather contrasting sample

path behaviour. Let t n} be a sequence of i.i.d. random variables with mean 0

and variance and Sn n It is well-known that ISn // I converaes

in distribution to the standard normal distribution N(0,l) and P(lim inf S . .)
n

= P(lim sup Sn/A = cx ) 1. Consider further a supercritical Galton-Watson
n-)o Z n

process (Zn I defined as Zn+l ni where IFni} are i.i.d. conditional on Zn

and P( n i = k) = Pk' k = 0,1,... If m = kpk c (1,-) it is known (see
k=O

e.g. [3]) that there exist some norming constants {cn} with lim cn+l/cn = m
n-w

such that fZn/Cn } converges a.s. to a random variable W whose distribution

function is continuous and strictly increasing on (0,-). Both cases are instances

of SM Markov chains with stationary transition probabilities {X I for whichn

there exist norming constants (a n  such that {an X I converges in distribution

to a non-degenerate limit F. We shall see that under rather general conditions,

the growth rate of the norming constants fa n  determines the limit pattern of

'a nX and characterizes its limit distribution: if lim a n+l/an = 1 then
n

P(lim inf a X n inf supp F) = P(lim sup a X > sup supp F) = 1, whereas ifnn -- nn--
n -' n -

1m a n+l /a n 1 then .a nX converges a.s., the supp F is either the real line
nn nn

or one of its half-lines, F is strictly increasing on supp F, and continuous

- except maybe for x = 0.

A transition probability function P is said to be SM if P(x,(-,,y]) is

non-increasing in x for evrry fixed y. A non-homoneneous Markov process odes

"o r
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{X(t); t c [0,-)} (or chain {X : n > 0}) is said to be SM if its transition
nprobability functions are SM. If {X n } is a discrete time non-ogeou

Markov chain, the stochastic monotonicity of the one-step transition proba-

bilities {P I suffices for the stochastic monotonicity of {X n (see [12]n f

Theorem 1). The term "stochastic monotonicity" was coined in [12] and has made

the object of intensive study in a number of articles and monographs (see [10],

[14], [15], [17] and [26]). Two recent papers ([7] and [2]) have dealt with

SM from the point of view of the limit behaviour. In [7] criteria for

convergence is probability or a.s. convergence have been derived for chains

converging in distribution to non-degenerate limits. In the case when F is

continuous such criteria were shown to be necessary and sufficient. The

object of investigation in [2] was the self-normalized process {F n(X n),

where Fn is the distribution function of X n , under the assumption

(1.1) sup P(Xn = x) - 0
x

Under (1.1), {Fn (X n)} converges in distribution to the uniform distribution

on [0,1]. Among other properties of interest, [2] contains a detailed descrip-

tion of the case when a.s. convergence fails. It turns out that the sample
I I

space : can be partitioned into some sets ' " and ") I. If... 1 ' 2 .. .. 1 ' 2 ... if

W F (X then for lim Wn(,) exists, whereas if . then theren n(n t 1 n n 1

4 exist two numbers ai and bi with ai < bi such that lim inf Wn(..) ai andn1,

lim sup Wn() = bi . A pictorial description of this sample path behaviour
nn1

is given in Fig. 1.1 below.

I ... -. L " " . . -- - .i i
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Figure I.1

When { n } converges a.s. the sets {Qi } are absent, whereas in the situation

Q I~LI

described by the example of ISn /AF }, IQ iI and all but one of { } are absent.

if 0Xn1 converges in distribution to a limit F admitting jump points,

convergence aas. or otherwise may occur irrespective of the properties of n .

n n

Indeed, the strong law of large numbers for {S n/n is not prevented by

P(lim inf Wn = 0) = P(lim sup Wn = 1) = 1. It would be therefore of interest

to study the limit behaviour of {Xn ) when its limit distribution is not neces-

sarily a smooth one and even when convergence in distribution does not hold.

We shall qive here a new approach to SM processes which does not require con-

vergence in distribution or condition (1.1) and enables one to study several

aspects of the limit behaviour. Our method is based on the existence of some

random variables W such that E(W qX ) = lim P(Xn J nX ) a.s. for any
k-, k k

subsequence n k; and left-unbounded intervals nJ with lim P(X 3 J = q,k k nk nk

. 1-...............- -..................". '
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q (0,1) and n = 0,1,... The variables {W } may admit at most three differentq (W

values with positive probability. If P(Wq = 0) I-P(W 1) Wq will be said

to be of type I, and of type II otherwise. Type I variables are of the kind

studied in [7] in connection with almost sure convergence, whereas type II

variables characterize some features similar to those descriLed in [2] for

the case when almost sure convergence fails. In Section 2, in addition to

describing {Wq }, we give some results relating limit properties of subsequences

of TXnI as well as a simple criterion for a sequence to be mixing. In Section 3

we study sequences converging in distribution where we shall find it convenient

to introduce two types of limit points and characterize the limit behaviour in

each case. The object of Section 4 is the limit behaviour of suitably normed

and centered Markov chains and processes with stationary transition probabilities.

In Section 5 criteria for a.s. convergence are derived under some assumption

of tightness. Finally, Section 6 contains some applications to branching

processes and diffusions.

The main ingredient of the approach is the identification of the sequence

of conditional limit distributions as a martingale, which leads to the limit

variables W q. A reader interested in the applications of Section 6 may skip

most of the sections and choose to read only part of Section 2 including

Theorem 2.1 and the results referrred to in the arguments of Section 6.

2. Thee-neral case. Let S R be the state-space of ,Xn  ,FP) its under-

lyinq probability space with . = S S .... , and , = (,.0' ".......n.. ) the

qeneric element of ... We shall agree to write A = B a.s. if IA = 1B a.s. and

lim IA = lA a.s., 1 being the indicator function of a set. Similarly, we
n -, n
shall say that 'A n converges a.s. if l A does so. Further A\B denotes the

n
difference of the sets A and B and AAB is the symwetric difference of A and B.
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We shall say that {X } converges weakly to a limit F if lim Fn (x) F(x) for
n n

any continuity point x of F, the case F(-,) - I and/or F(-,) .0 beinn not

excluded. If F(--) = 0 and F(-) = 1 we shall say that {Xn convernes in distri-

bution to F.

Let q be a number with 0 < q < 1 and assume that there exist a subseouence

{nk } of the non-negative integers and some intervals {J ) such that
k n-'n {n

nk
lim P(Yn fJ ) = q, where Jn = (-cx I or (--,x nk) for some ix n }. Consider
k- k k k nk

further the quantities {P(Xn c dn kXn = x)) for x E supp Fn and n > nk. By

stochastic monotonicity P(X c JIX = x) is non-increasin in x, and by then k n nkk

well-known weak compactness principle (see e.g. [22] p. 181) one can extrict a
, ' g(n)(q

subsequence of fnk}, say {nk, such that Gnx ()= lim P(X n  Jxn = X)
k-

exists for all x , supp F . The process of extracting subsequences may be

carried out by the well-known diagonal procedure to produce a subsequence
r ,}~ of n such that G (n) (q)= iP(n*t *X

nk of sc t = lim P(X= nXn x) exists for all
k-w k k

x supp F and n = 0,1,...
n

Lemma 2.1. There exists a random variable W such that lim n(n)(q) = W
. n* ,  n

a.s., E(W ) = q and E(WqXn) - G(n)(q) a.s. for n = 0,1,...
q n X n

Proof. Applying the Chapman-Kolmogorov foriiula to P(X , n k n = x)-n k  nk  n
k k

and then taking the limit as k-.. yields

(2.1) G(n)(q) (G (n+l)(q) P (x,dy) n=0,1,..
x J, y ) n+ 1
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It is easy to check that the property (2.1) defining a so-called space-time

harmonic function G (n)(q) leads to
x

(2.2) E(G(n+I)(q)JX n) 
=  G(n)(q) a.s.

n+l n

The Markov property in conjunction with (2.2) implies that {G(n) (q) is aXnn
martingale. Because {G(n)(q))are bounded, lim G (n) = W a.s. exists.

x n -o nq

The total probability formula yields E(G(n)(q))= E(Wq) = q and by the closure
n

property for bounded martingales we conclude that E(W IX) = (n)(q) a.s. forq n CX (n

n=O,1,2,...

Remark 2.1. The functions fG(n) and therefore the limit variables {W 1x tq

seem to depend on the choice of the subsequence (n{} extracted from {nk} at this
stage in the proof. It will turn out that G(n)(q) are independent of the choice

x

of {n*1 and even that G(n)(q) = lim P(X < x IX = x) whenever
x k- nk- nk

lim P(X x ) = q for any {nk } (which may even be the set of non-negative
k nk - nk

integers). The variables W qi will turn out to characterize the limitq

behaviour of {X ni.

Proposition 2.1. Let z be a continuity point of the distribution function

of W. Then
q

(a) lim X I = {W zi a.s.
n n qn-

,

where In  (-- ,Z) or (--,z n for some real nuwhers z

-
b

, - . - , . • .
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(b) either {W = 11 = {Wq z} a.s. or ,Wq = O1 {Wq z a.s.

Prcof. According to Lemma 2.1 G(n)(q)} converges a.s. to W . This
Xn q

implies that for any continuity point z of F

(2.3) 1Wq " z} = lim {G n)(q) - zl a.s.

q - n

Stochastic monotonicity and (2.3) ensure the existence of some left-unbounded

intervals i I such that lim {Xn  I n  = {Wq " z} a.s. and (a) is proved.
n , n

To prove (b) notice first that two cases may arise: (i) PiW -, z. < qq

or (ii) P(Wq z) > q. We assume (i) and claim that G(n)(q) _ P(W > zIXn) a.s.

Indeed, by the proven part (a) above P(Wq , z'X n lim P(X I X ) a.s.
' ln , m mn

Assume by way of contradiction that G~n)(q) - P(W z X ) on a set A of
n Q n

positive probability. Since 'In  are left-unbounded interval-, this may happen

only if z xn for k large enough. It follows that G(n) (q) P(Wq Z.Xn) a.s.
k k n

with strict inequality on A. Taking expectations gives q P(W q z), aq

contradiction that proves that G(n)(q) > P(W " zIX ) a.s. Combining the
n q n

latter inequality with the Markov property and the martingale converqence

rTheoren yielIs q 1 for almost all z. , Wq Z,. If (ii) holds one nets

G(n)(n) P(V" Z'X ) a.s. and a similar reasnninq leads to W _ 0 for almost
Xq n o

n

all ZW z .

Proposition 2.1(b) shows that W may take at most three distinct valuesq

with positive probability, two of them beino 0 and 1. We shall say that W

is of type f if P(Wq 0) 1-P(Wq 1), and of type II otherwise. For Wq of

q . - q



type II the possible values are 0, k and 1 where 0 k < 1. Clearly E(W ) = qq q q
implies min(P(W 0), P(w= 1)) > 0 for q , (0,1) in case I, whereas inq(q q =k

case II P(W = 0) = 0 and/or P(Wq = 1) = 0 is a possibility, but P(Wq k )0

holds anyway.

Le,-,ra 2.2 (a) If W is of type I then there exists a sequence of
q

left-unbounded intervals {1n' such that lim 0 ' I nj = {W = l} a.s. and
n-n

lim P(X n Tn  = q.
n-

(b) If there exists a subsequence kn } of positive integers and some

left-unbounded intervals {Ik } such that lim (X k t Ik I a.s. exists, then W
n n-r n n

is of type I with q = lim (Xn  '- I k
n k kn

Proof If W is of type , then P(W = 1) = q and {W > z1 = W = l) for
q1 q q q

any z with n - z 1, in which case Proposition 2.1 (a) implies that

lim X = 1- a.s. for some left-unbounded intervals 'Ll}. This
n -n

necessarily entails lir P(X In ) P(W = 1) = q, and (a) is proved.n n q
n,

Asure now that condition (b) is in force and notice that

A XF I i! ' P(Xk Ik x) a.s. where A = lim ..X k  , Ik a.s. Further,
n., n n n-, n n

- e r tr o orrf of Proposition 2.1 (a), one can invoke the martinqale convor-

,en, e treore; and stochastic monotonicity to deduce that li ; P(A X ) A a.s.
Rm A

- jie" the cxistence of some left-unbounded intervals I n such thatn

x ri A i.s. To complete the proof we shall show that "A = W a.s

ir) . , rnd P(A). rdeed, recall that

0R "' fl
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G )(qi EW iX = l P(X Jn X ) a.s. where lir P(X ) q.
m kk k ,- k

Since I are left-unbounded intervals, it is easy to see that

nn-lim P(X nk, ' Jnl, ,,' 'Xn* ' Ink*} 0 . Thus, if necessary by takina a further

...euence, one Can arrange to have x P(Xr * i IV '

trc, Borel-Cantelli lem,,a P(XnK Jn :n x n* i.o.) = 0, and this yields
K k k k

A lim X n Jn* a.s. Thus E(W q nX n P(A Xn ) a.s. for all n, which implies
k- k k

1 A a.s. and proves (b).

L emma 2.3. Suppose that Wq is of type II and write q! I P(W = 1) and

q2 1 - P(Wq = 0). Then

(a) If P('e. = 1) . 0 and/or P(W q 0) .0, then W and/or W are of

Vr~~p I , 1 .1 a.s. and 0 Ws
q q q q2

(t)) There is no q' in (ql'q 2 ) with Wq of type I.

Proo. ,2ccordinq to Proposition 2.1(a) for z such that k z l inq

c~ie t ha t P( 1) 0 or 0 - Z Kin case that P(Wq = 0) :. 0, we oet thatq q

nth . i f l , left-unbounded intervals {I' or I with li r i X =n n n n
S .. .:W , .s. respectively, and Le-' a 2 2M!

•n n .~ '. I
n -

t" e -  , root of (a).

t )rc,vt , > u':. toe contrary arc ch,'se q q , .,) suce;, thi t,

-7 two i _ es may occur: . : c or . , . inc(

Ki '

-. . "-- _-.. . . .... . .... • . .. . . .' - - ,.~ , CL :-":::'
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for x A and n large enough. Thus (3.5) holds and 1X n 6 i.o. = <(a,b) a.s.n n r

Since F(b-)-F(b- ) , 0 for any - 0, r1 and 2 may be chosen arbitrarily

close to b and therefore lim sup X = b for almost all . (ab;.n
fl-)-c

it refrairs to consider the case F(b-) ' L12 which makes b u point of type

Cleary F(b) q2 and F(b) - F(b-) - 0. This is similar to the case of

a considered before and may be dealt with by taking A xn x

x:k(b-) - F (n)(b - )  < k(b-) + L} or A = ,x: F(n)(b) -- k(b-) + 2-- ,
- x n x

x:k(b-) - F (n)(b-) < k(b-) + } according as b is of type !I or I,

0 < k(b-)-c k(b-) + 2, 1 and Bn = (b - n' b + ) for some positive ,n n

with lim , 0 and lim P(Xn  Bn) = F(b) F(b-).
n_ n n

Consider now the case sl =a and/or s2b. Since there are no points of

type I smaller or equal to a and/or larger or ,qual to b, the above proof may

be easily modified to yield lim inf Xn  a and/or lir sup X b for almost
n- n -,,

all ..(a,b). We recall that the Borel-Centelli lemma makes it possible that

P(Xr= x i.o.) 0 for a sequence fx with lir P(X = x) 0. If such a
f rnI" n n

sequence with ii n s, exists, then ai , and similar>y if such a

CE (F2OC~ ii * li 1xi,,t-. then tarc t he proof sz n ~e
r.n,

nrrr :'e r, r; t;Or, a , T er .- r.- L' , and , 2 ,e- .2

ir. 7 F is the unifor, dis tribution o n '0,1 , Ther, re-,vs , -

." h)) :o ,x ra:td f ro roo ait on 3.,.

, .. Condition; of the tvv') 0 ,' I or (; ac(-nrdirn as ,

e r e cor . idered i [7 in reltion , a.s. converqence 1 nd proved
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Then Theorem 9.5.2 of [4] applies and yields

P({X A i.o. X B i.o.)} = 0. Notice thatn n n n

(3.6) P(U {X f B*iXn = x) _ lim P({X. B 'X=X)
j=n+l n n n =

F g(n)(a) F (n)(a- )

x x

Taking into account the definition of A n I we get

F(n)(a) - F(n)(a - ) - k(a) - --n > 0 for x . A and n sufficiently large, which
x x n

proves (3.5) for I = k(a)-t-,'. It follows that lim inf X = a for almost alln
n -

.a,b).

We prove now that lim sup X = b for almost all . .(a,b). Assume first
n

that F(b-) = (2 in which case we may choose l and with E : 0 such that

b - and b - are continuity points of F, (b - I' b - I and

F(b - - F(D - ) 0. Define An = {x:k(b- 1 ) - < F(n)(b - i

k(b - ) + r, 'x:k(b - L - c < F(n) (b 2 k b 2 ) + E where

may be chosen such that k(b - ci) -c, k(b - l + , k(b -2) - and

k(b - 2 )  + • (0,1) and k(b - 2 )  k(b - 1 - 2? - 0. Take Bn

(b - hi, b - 2  Then again we get lir X A = ..(a,b) a.s. and we snall

show that (3.5) obtains in this ccse as K Indeed"

(3.7) PU X. 5 . X - x) I I" P . x ,
j=n+l J nn

, n ) R0
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Theorem 3.2. Suppose that {Xn I is a SM Markov chain converqino in

distribution to F. Then for any y F F one of the following two cases occurs:

(a) y is of type I, in which case there exist some numbers :Yn and

intervals In , where In is either (--,y n) or (--,yn ], such that lim Xn  i

a.s. exists and liM P(X I ) = F(y).
n_ n n

(b) y is of type II, in which case there exist an interval I containina

y with end-points a and b, a < b and an event A(a,b) with P(A(a,b)) ) such

that lim inf X = a* and lim sup X = b* for almost all , A(a,b) and some
n -n-c

constants a* and b*. In addition, a* < a or = a according as a = s, or . sl ,

and b* -b or = b according as b = s2 or < s .

Proof. (a) follows from Lemma 2.2(a). It is clear that {y n may not

converge to y if the set {x:u = F(x)} with u = F(y) has more than one point.

To prove (b) assume first that a > s I and b s 2 . Set for definiteness

I = La,b) where a and b are finite. The case I = (a,b) is simpler, since then

a may be treated like b with F(b-) = q2' a case that will be taken up further

on. Thus, assume a to be to of type II, and write A = {x: k(a) - , -n -

F(n)(a) . k(a) + Ix: F (n)(a-) < rQ where 0 - k(a) - -: k(a) + 1x - a -x

and 0 < k(a) v. Since lim F (n)(a) = k(a) for almost all
n-- n

:li: Fn) (a-)_ lim P(W(a) = l'X) 0- we get that lim Xn  A = A.(a,b)
n -, n n- n-

a.s. Write further Bn (a -n a+, n where n is a sequence of positive

nurbers such that liw ;n 0 and lim P(X n  ' ) = F(a) - F(a-). ;e shall show
nn n ,

thdt for nnme with 0- l and n large enouch

. P(U X; B. Xn ) for- almost all X A
n f n n
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rn P(X 1n) F(y). It is easy to see that F(x ) F(y) and therefore

n 0
X -Yn y0for n sufficiently large, which together with stochastic monotonicity

yields F (n)(y) F ()(y) where F)= rl n However, F(n)(Y) -z0 0 x 0 0
x n Yn Yn Y n

a( i Fn)'  n)(y) =1weee
ard ho 0 kY)< z0 is contradicted. Thus lim Fx hnee

n(n .Y) z(

lim x n x < x0(y). The proof for x > xI(y) may be derived by a similar

reasoni nq.

Consider now the case when y is of type II. We shall prove that

lim F(n)(y) = k(y) for any x I 'ith q < lim F (xn) < q2 " Suppose that the
n- n'nn 2n ,n 

n-,(n)
contrary holds and take for definiteness lim F in(y) < k(y) for some 4x'

n--o x nnX (n)

such that q, < lim Fn n q < q2 " By stochastic monotonicity lim F(n)(y) < k(y)
n (x nnq2 Xn

wherever x n- x', and since {F(n)(y)f converaes a.s. to W(y) as n - we aetn n x
n

P(W(y) k(y)) P(W(y) = 0) -,- l-q >,l-q 2, which is impossible. Since the

cdse x a or x b may be dealth witn as in the proof given above for y of

type , It re;",iins t . notice that k(y) = (F(y) -ql)/P(A(a,b)) follows from

th vore ;:,nerri result of Theorem 2.1(b).

-,rk 3.1 :f y is of type II, ;nere must exist at least two points '

imr 'supp with lir x x and q . li F (x Ir n I n .n

r F( C, nuarantees (3.4) for s r,e ,equences x n  npp Fn

. ' i I K ) in eah of (q,,F(y) and , ,

rlfl t I  inf ,"x supp F and s2  sup x:x supp F.

.- • . ' ". .
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there exists a subsequence {xn } with xn supp F and rn x x but not a
k nk nk k- k

whole sequence {x 1, case that could not happen if x e supp F. In what follows
nn

we shall write for convenience lirn = x wherever xE U, a relation that should
n-co

oe understood to be replaced by lim x k = x when no such x ni with x n supp F
k-* nk n

exists, the arguments used in the proofs being the same. Write x o(Y) =

inf {x: F(x) = F(y)} and xl(y) = sup {x: F(x) = F(y)}.

Theorem 3.1. Suppose that {X } is a SM Markov chain converging in
n

distribution to F. Then

(3.4) limn F(n)(y) = Gx(Y)
n-, X n

holds for

(a) any y , x , U and {x nfsupp Fn with lin xn = x, except maybe for
n n

x , [x0 (y), xl (y)], for y of type I and

(b) any y a,b', x U and ix n ' upp F n with lir x = x such that
n n n

lim F (X ) exists and differs from ql and q2, for y of type I.
n n

n-

Proof. Consider first the case when . is of type I and assume by way of

cor.tradict.or that there exist . x (y/ ana z with ,) I such that
0 0

(n 01>i:, F ( y z for a sequence ,x wit 1 i X : x and x U. We mi.ay
S 0 n'nl- X n-,
n

suppose without loss of generality tnat z0 is a continuity point of F and get

.0 (n) te
v!, ir, the proof Proposition 2.1(a) that if n 0 .x: F (y) . z thenn x 0

To 0 or1 0ann n  (y -. 1 a.s., where I n  is either (..,y or - yn and

. . ....- ..
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b is of type II write qi = P(W(b) = I) and q = P(W(b) > k(b)) and notice

that F(b) = E(W(b)) > q2 > E(W(y)) = F(y) requires (ql,q 2 ) (qj,q2) which

in conjunction with Lemma 2.3(b) leads to q2 = ql. It follows that

F(b-) qj , F(b) which makes b a point of type III. On the other hand,

iW=b) k(b)} {W(y) = k(y)t a.s. and b / I obtains in either case.

To complete the proof notice that by Theorem 2.1(b) A = {W(y) = k(y)}
ql ,q2

a.s. for any y with ql < F(y) < q2' i.e. for any y in I.

We shall next introduce two types of limit distributions {G x(y)

corresponding to the types of y defined above. Let r = {x: 0 < F(x) < I} n C(F)

where C(F) is the set of continuity points of F. Suppose that y c T is of type

I and define

1 if x <y
(3.2) Gx (Y) 0 ifx>y

Suppose now that y F is of type II. Proposition 3.1 ensures the

existence of an interval I with end-points a and b such that A ql,q 2

{W(y) = k(y)} a.s. for any y c I. We relabel A as A(a,b) and defineql ,q2

1 ifx<a

F(y)-q
1(3.3) G (y) = - if a < x < b

x P(A(a,b)

if x > b

When a and/or b are infinite, (3.3) undergoes obvious modifications.

Let U = fx: x = lim xn for some xn c supp F 1. In U we have included
k-- k k k

subsequences 'x n to make allowance for the case when for some x V supp F
nk
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*for sequences converging in distribution.

Proposition 3.1. Suppose that y is of type II. Then the interval I is

the maximal set of points z of type II containing y such that {W(y) = k(y)} =

i AWiZ) = k(z)! a.s. The point a belongs to I if and only if a is of type Ii;

a and b are of type I'; and (a,b) contains only points of type 112.

Proof. We show first that (a,b) does not contain points of type I'

Assume the contrary, that y c (a,b) is of type I'. Then q < F( -) < P(W(^)=l)

F(y) < q2. However, by Lemma 2.3(a) WJ is of type I with q = P(W(y) = 1) which
2 q

* is in contradiction with Lemma 2.3 (b).

We prove next that a is of type I'. Let P(W(y) = 1) = F(a). Since

W(y) may take at most three distinct values with positive probability, one can

choose z such that by Proposition 2.1(a) lim {XnI } = {W(y) > z1 = {W(y) = I} a.s.
nnn-o

and Lemma 2.2(b) implies that a is of type I. Notice that in this case a / I

by the way a was defined, which agrees with the statement that I contains only

points of type II. If q, < F(a) then F(a-) < ql = P(W(y) = 1) - F(a). Notice

now that W(z) is a.s. right-continuous because W(z) is monotone in z and

E(W(z + £) W(z)) = F(z - E) F(z) - 0 as - 0 is due to the rinht-continuity

of F. Thus either y = a or y > a and taking the limit of P(W(y) = 1) as

y - a we get from the above inequality that F(a-) _ P(W(a) = 1) F(a), proving

0 that a is of type Il.

We prove next that b is of type I'. If q2 
= P(W(y)._ k(y)) F(b) we can

argue as in the case of a to show that b is of type I. If q2 -- F(b) then b

may be of type I or II. If b is of type I there is nothing left to prove. If

01 : 1 . . . . . . . . . . - ,• . • . . , , , . . . - , ,.
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We note that the condition assumed in Theorem 2.4 on F' and F'' is always

satisfied if F' is continuous.

Corollary 2.2. Suppose that {Xn } converges weakly and contains a

subsequence converging in probability. Then {Xn} converges in probability.

nn3. Sequences converging in distribution. We shall now assume that {Xn }

converges in distribution to a non-degenerate limit F. Define

(3.1) F n)(y) = lim P(Xm < ylX = x)

where y is a continuity point of F and n = 0,1,.... Theorem 2.1(a) ensures

the existence of {F n)(y)}, which may be extended to right-continuous functionsx

with respect to y by defining F(ny) lim F(n)(y' ) for any jump point y of F.
x Y xy

We agree to write W(y) for Wq with q : F(y) and define y to be of type I or II

according as W(y) is of type I or II. If F admits jump points, there must be

values of q for which there is no y with F(y) = q even if Wq may be well

defined, since q = lim P(Xn E J n ) for some sequence {nk} and left-unbounded
n-l k k

intervals WJnk is a possibility. A point y of type II will be said to be of

type II1 if F(y-) ' P(W(y) = 1) < F(y), and of type 112 otherwise. Points of

type I or I1l will be said to be of type I'.

Assume that y is of type II and the possible values of W(y) are 0,k(y)

and 1. Write as before ql = P(W(y) = 1) and q2 = P(W(y) = 1) + P(W(y) = k(y))

and define a = inf {x: x c supp F, F(x) > ql; and b = inf fx: x ( supp F,

F(x) > q2 f. Let I be (a,b) or La,b) according as F(a) = ql or - ql. Of course,

a and/or b may be infinite. The next result characterizes points of type II
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(X n} and 1'X n under the assumption that (X n} converges in probability. For

a weakly convergent sequence (X n we define convergence in probability to a

not necessarily finite X as the fulfilment of the condition:

i: ?(X n < x . {X .-- x}) = 0 for any continuity point x of F where F is

the distribution function of X.

Theorem 2.4. Suppose that (X n} is a SM Markov chain and there exists

a subsequence of {X n, say {XnA, converging in probability to a not necessarilyn nk
a.s. finite random variable X, and that {X n, is another subsequence of

{X n},converging weakly. If {y: F'(x) = y, x c C(F')} _- {y: F''(x) = y,xcC(F")l

where F' and F" and the limit distributions of {X I and {Xn ), and C(F')
nk k

and C(F'') are the sets of their continuity points, then {X ni converges in
nk

probability.

Proof. Choose x to be a continuity point of F'' and write F''(x) = q.

* Then there must be a continuity point of F', say x', such that F'(x') = q.

Since (X } was supposed to be convergent in probability, it contains an

dik

- a.s. convergent sequence, so that we can assume the existence of lim :X .<x'! a.s.
k-- nk

In view of Lemma 2.2(b) this makes Wq of type I. Further, by Lemma 2.2(a) there
_q

4 exists a sequence of left-unbounded intervals {I } such that
n

nlim fX n n  = {Wq = i a.s. with lim P(Xn  In) = q. It follows thatSn-, n n qn- n

lim P(fX Ia,, I A {X r, < xI) = 0 and by transitivity lir P(fXnH <x) A {4 =I)=O.
nk n rk n ~ ~ ~

An appeal to Lemma 2 of 1-] yields now converqence in probability for Xn ,"

iI
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where x is a continuity point of F, B is an event in the o-field generated

by X0,. ... X and m an arbitrary non-negative integer. We shall consider a

generalization of (2.4) to Markov chains which are not necessarily converqent

in distribution: {X n will be said to be mixing if for any q , (0,j) forEn
which there exist a subsequence {nk } and left-unbounded intervals {J such

k nk

that lir P(X n dn q, then
k-co nk k

(2.5) lim P(X n Xn) = q a.s. for n = 0,1,...
k-Ko nk nk

Theorem 2.3. Suppose that {Xn I is a SM Markov chain and there exist

q (0,1), some numbers and left unbounded intervals {J such that
nk

lim P(X, J^ IX^ ) = q a.s. for m 0,.... Then {X } is mixing.
* k-*o nk nk n m  n

Proof. The condition stated is equivalent to W_ = q a.s. for some
q

in (0,1). This implies q1  P(W' = 1) = 0 and q = 1 - P(W, = 0) = 1. By
q q

Lemma 2.3(b) there are no points of type I in (0,I), i.e. there are no points

of type I at all, which leads to P(Wq = 0) = P(Wq = 1) = 0 for any q. It

follows that Wq q a.s. and an appeal to Theorem 2.1 yields (2.5) completing

the proof.

Theorem 2.3 expresses the rather surprising property that mixing is

ensured merely if (2.5) holds for one value q in (0,j) and some {nk and

{J I.* nk

The next result relates properties of two weakly convergent sequences

0
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Proof. By Lemma 2.2(a) for any 0 there exist some left-unbounded

intervals {J (q - c)}, {J (q)Y and {J (q + )l} such that

lim IX n J (q - q)}= _ a.s., lim {X n J n = {Wq = 11 a.s. and
n- o n-, n n

X Xn i n (q + ) {Wq+ c  U a.s. Since for n large enough

n (q - ) c (--,x n] c j n(q + c), it follows that W = } c

lim inf {Xn < x nc lim sup (Xn < xn} - Wq+ C = 11. But lim P(W = 1) =
n- - n-o n- q-fl

lim P(Wq = 1) = P(Wq), concluding the proof.

Theorem 2.2. Suppose that {Xn I is a SM Markov chain and that W q1

exist for all q , (0,1) and are of type I. If {fn I are some non-decreasing

measurable functions such that {Y n, with Yn = f n(Xn ), converges weakly, then

{Yn } converges a.s.

Proof. To prove a.s. convergence for fY I it suffices to show that

n

lim iY < x) a.s. exists for any continuity point x of the limit distribution
n -n-Ko

F of Y, including points x for which F(x) = 1 or F(x) = 0, 4hich may be
nA

the only points of this kind when F is degenerate). Since there are always

points {x n such that IY < x} = {X . x } an appeal to Lemma 2.5 finishes
n n- n -n

the proof.

The next result refers to {W 1 of type II for which P(W= k ) 1. Such

a case is related to a condition of mixing given by Renyi [23]. A sequence

fX } converging in distribution to a limit F is said to be mixing in the sense
n

of Renyi if

(2.4) lim P(4Xn _• x B) F(x)P(B)

rn-



P(W = k ) > 0. By Lemma 2.3(a) q, P(Wq = 1) and q2= I-P(Wq = 0). It

follows that E(WTq q = q, + kqP(W q kq) = ql + kq(q2-ql). This yields

k _a.s. is,i. q =  (q-ql)/(q 2 - q,)  and W q =  {W q=I}1 + (q -ql1)/(q 2 - ql) 'A as. is

.now easily derived from the remaining statement of Lemma 2.3(a). To complete

. the proof notice that since W and W are of type I, Lemma 2.3(b) makes it

impossible for (q,'q2) to vary with q.

Remark 2.1. The statement about the existence of G n)(q) in Theorem
n

, 2.1 (a) contains as particular cases Proposition (3.1)(j) and Remark (3.2)

of L2] removing the restriction (1.1).

Remark Although we defined W in relation to a subsequence {nk} for

which there exist intervals {J } such that q = lim P(X J Jnk), the variablesnk k-o nk k

{W q turned out to be independent of subsequence choice. If Wq is of type I

I we have seen that there must exist a whole sequence {I n of left-unbounded

intervals such that lim P(X c In ) q whereas for W of type II this need notn n an-

happen. However, if condition (1.1) is imposed we can define c (n) to be the
q

q-quantiles of Xn and get that lim P(Xn < c n)  q for any q e (0,1) so that
n-co

in this case W exists for all q and, besides, there is no need to confineq

ourselves to limits of subsequences when defining G(n)(q)1.

Lemma 2.5. Suppose that {W } exist for all C (0,1) and are of type I.
q

Then lim !Xn  xn = NWq=l} a.s. for any {x n such that lim Fn (x) x.n-, n- n



such that lim P(X c J = q for some sequence {nkl and left-unbounded
k- k k

intervals {Jnk. Thennk
(a) There exist the random variables Gvn)(q) = lr P(X r J.X n ) a.s.

n k--, nk nkn

and W = 1lim G(n)(q) a.s. for n = 0,1,... where E(Wq IXn) = Gn)(q) a.s. for
an n-d n q

n = 0,1,... and E(Wq) = q.

qq
(b) The variables Wq are of two possible types: I, if Wq = 1 = a.s.,

and II, if Wq = + (q-ql)/(q 2 -ql) a.s., where

q1  q1 ,q 2

A ={ q =l}\ =},0<q<q<q 2 <Iw 0 or W (of type I)
q1,q 2  q2 = q, 1 ) 0q ,<q<q 1 q1

according as q1 = 0 or > 0, and W = 0 or W (of type I) according as q2=l

or < 1. The quantities q1 and q2 do not depend on the choice of q in (ql'q 2 )"

Proof. According to Lemma 2.1 Gn)(q) = E(Wq1Xn) a.s., which in view of
n q n

nn
Lemma 2.4 does not depend on the choice of fnk }I and {J nk such that

lim P(X nk d) = q. Thus any subsequence of {P(Xn E dnk Xn), k =
n-x n k nk

contains a further subsequence converging to G(n)(q). It follows that the whole
n
n 

(n)(.
subsequence {P(Xnk Jn kXn), k = 1,2,...} converges to the same limit G(n (q).

k k Xn

The remaining statement in (a) follows from Lemma 2.1.

To prove (b) recall first that according to Proposition 2.1(b) W may
q

take at most three distinct values with positive probability. If P(Wq = I) =

1 P(W 0) Wq is said to be of type I, in which case it is obvious thatqq

S4 =1 a s with E(W q) =P (Wq = 1) = q, whereas in the case when W isq {Wq= I } • . q
q

of tvne IT there are three possible values for W 0,k and 1 with

*. .O .'. . . .i
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an i-atom if either P(A) = 0 or P(A) = P(A) for any , such that

A = lim {X - L a.s. for some intervals {L with L J n n=O,1,...
n-n n

Lemma 2.3 (b) yields the following.

Corollary 2.1 If W is of type II then ,W k } is an i-atom.
q q q

The sets {W = k } will turn out to correspond to the sets described
q q

in Fig. 1.1 for the sequences {Xn I convergent in distribution.

Lemma 2.4 The random variables {Wq I do not depend on the choice of rn k

and {J n such that lim P(Xn c Jn ) = q.
k ok k

O Proof. Choose two subsequences {nk } and fn } such that

lim P(X k n- c lim P(X k} = q for some left-unbounded intervals ;j

k- n- k k k- n knk

and {J ni, and construct the limit variables Wq and W' corresponding to the

two subsequences. Assume first that Wq is of type I. Then Lemma 2.2(a) and (b)

may be invoked to show that W' is also of type I, and a reasoning may beq

easily extracted from the proof of Lemma 2.2(b) to yield that {Wq = 1 = {W' = 11 a.s.

This is equivalent to W = W' a.s. which finishes the proof in case I.
q q

Assume now that W is of type II. Then W' is also of type II. Recallq q

the notation used in Lemma 2.3 and write q, and q2 for the quantities attached

to Wq and qj and q for the quantities attached to W'. Since q - q < q2 and

ql < q q , (ql q2 ) and (qj,q2) may either partly overlap or coincide. Since

W , W W!1, Wq, are of type 1, we get W q = W I and W', = Wq by the proven
Sql q' q2 q ql q1  q2

part of Lemma 2.4 and an inspection of Lemma 2.3 is easily seen to lead to

q = ql and q2 = q2, completing the proof.

Theorem 2.1. Suppose that {Xni is a SM Markov chain and choose q (0,1)

n.

0!
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useful in deriving some properties of F as strict monotonicity, continuity,

finiteness of moment, etc. (see [8]).

* Remark 3.3. 1, all y F are of type I, X n } may not converge a.s. By

Theorem 2.2 convergence a.s. may fail if not all {W } are of type I.
q

Such a situation may arise if F admits jump points resulting from

lumping together some values of q for which W are of type II. Also if Fq

has intervals on which it is constant, Theorem 3.2(a) cannot be invoked to get

lim {X C In } = lim {X < y} a.s. for any y c T as done in [7] when provina
n nnn-co n-)oo

* a.s. convergence. The minimal condition on F guaranteeing a.s. convergence

seems to be:

(b) F is either continuous or admits jump points {ci , i c 01 such that

(F(ci + 6) - F(ci))(F(ci-) - F(ci - 6)) > 0 for any 6 > 0 and i r 0. This

condition was considered in [7] and shown to entail the equivalence of a.s.

convergence and convergence in probability.

4. The stationary transition probability case. Assume that {Yn is a chain

with stationary transition probabilities, {an} with an > 0 and {b n  are two

sequences of constants making {a n(Yn + b )) convergent in distribution to a

non-degenerate limit F. Write Xn = a (Y + b n) for n = 0, F =

lim P(Xn < x'Yo = x) where y is a continuity point of F, and n) n P(Y )
. n-

for n = 0,1 .... Further v is to denote that ,) is absolutely continuous

i. with respect to p.

Lemma 4.1. Suppose that 'jl << \0 Then there exist two constants

and $ such that lim a /a and lim a (bn-bn) = $ with 0 and
n+l n n+l n+1 n

n-

f
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4 Proof. Let y be a continuity point of F and

(4.1) P(Xn < y) = fP(Xn < ylY 0 = X)vo(dx)

The aominated convergence theorem applied to (4.1) yields

(4.2) F(y) = lim P(X n y) F )
~n_*oo

Using the stationarity of transition probabilities one gets

(4.3) P(an(Yn+ + bn) y) Yn bnlYl = X)vl(dx)

- P(X_ < y1Y0 =X)v (dx)
S < OYlY X)V(dX)

= P(X n _

• =~ JP(Xn < Y) )Y0 = x)Avo(dx) =

where X = dvl/dv0 stands for the Radon-Nycodym derivative of )I with respect

to \0 ' The dominated convergence theorem applied to (4.3) yields the existence

of FI(Y) = lim P(a (Y + b_ y) and

n yn4l n)yan

(4.4) F1(y) = Fx(Y)X 0 (dx)

Since v0 (0 < c) = 1 one may easily see that F1 is not degenerate. Indeed,

if Fl(Y) where 0 or 1 according as y < c or y > c for a certain constant c,

then by (4.4) the same property would hold for Fx(y) for almost all x with

respect to ")0 and by (4.2) F would be degenerate as well. Thus both

a n (Yn + bn ) and {a n (Yn+l + bn )) converge in distribution to non-deqenerate

limits and the result now follows from Khintchine's theorem on converqence of

* * . .. *. . . . * . . -. * . . . * *I
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types (see e.g. [22] p. 2'.6).

Lemma 4.1 is an improvement on Theorem 3 of [5] where a stronqer condition

was assumed on F. We notice that stochastic monotonicity was not used in the proof.

Lemma 4.2. Suppose that the conditions of Lemma 4.1 are satisfied with

a 1. Then there exist some constants {b'l} such that "a (Y + bI)} converqes
n n n

* in distribution to a non-degenerate limit and lim a (b' - b-) = 0.
n-~l n+l nlirao

nProof. Take bn b - X0/a where O 6/(1 -B/ ) Since an(Yn + b') =

Xn - convergence in distribution of {a n(Yn + b') to a non-degenerate limit

clearly obtains. Further a n+l(b+ - b) =a (b - b n) X + a n+I/a n '

and taking limits gives lim a n+l(' - = 10 + ,X Ofinishinq the

proof.

Remark 4.1. Suppose that B = 0 and x0 is a continuity point of F. Then

nx0 is also a continuity point of F for any integer n. Indeed, using Lemma

* 4.1 in (4.4) yields F1 (x) = F(ct x) and

(4.5) F(c(x 0 + )) F(c(x0 - )) = (Fx (x0 + c) -FxX -( ))x 0 0 (dx)

On the other hand (4.2) implies

(4.6) F(x0 + c) - F(x0 - ((Fx(X + F:) (x -))v 0(dx)F0x(X 0  0)\o~x

* and it is clear that if F is continuous at x arnd we let r 0 in (4.6), the

integrand must tend to 0 as well for almost all x with respect to .... i.e.

F x(.) turns out to be continuous at x0 for almost all x with respect to 0'

* By (4.5) this implies that x0 is a continuity point of F if and only if (x0

.. .. ..... ,-.;,. .. _m . .. ,. --. "' . -,*. --.. -"" " " " - . ".". . . .. . . . . . .
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is a continuity point of F and therefore if x0 is a continuity point of F,

nso will be anx0 for any integer n.

Similarly, one may show that F(x2) - F(x) 0 for x2 > x1 entails

F(rnx 2 ) - F(nxln = 0 for any integer n.
Let be the shift function defined on ,-, by C(wOW 1 .) =
Le,9 i .. 9" "9 "...

0 lk k-land write CA = {w:w c A}, GO., = A, 0- A = {w:Ow , A}, 0 A = O - A) and

0 kA = 0- (0-k+)A for k = 1,2..... If J is an interval with end-points

x and x2, OJ is to denote the interval obtained from J by reDlacinn x and

x2 by ax1 and atx2 respectively.

We shall further need the follow'no.

Lemma 4.3. Suppose that vI VO and that for some left-unbounded

intervals {j lim {Y C J n a.s. exists. Then lim {Y E J I a.s. also exists
n n n n+k n

and 0k lim fY E 3 I = lim fY 3 J a.s.
n-o n n n-- n+k Jn

This result can be extracted from Theorem 5 of [1] and Lemma 2 p. 91 of [6].

Theorem 4.1. Suppose that {Y n is a SM Markov chain with stationary

transition probabilities, vI <<  and {X f with X = an (Y + bn) converes in1 0n ) n nY n bn n' e si

distribution to a non-degenerate limit F with :J 1. Then, if necessary after

a recentering, F = 0 and

(a) there exists at least one point y0 of type I'

(b) if y0 
# 0 is of type I(lI1) then tn YO is also of type 1(11) for all n

(c) if yo / 0 then any interval J of points of type 112 of the same siqn
(n n+lnl

as y0 is contained in an interval (Any O , .. y0 ) for yo > 0 (or (, n+ly 0,

-ny) for y0 - 0) for some integer n. If J is an interval of point of type

112 then J is also an interval of points of type 112 for all n.



28

Proof. Notice that by Lemma 4.2 one may take 0 = . Choose y to be a

continuity point of F. Then by Remark 4.1 ay is also a continuity point of

F and

(4.7) F(O ) = lim P(X m < yIY = x)
m- 0

= lim P(am(Ym+ 1 + bM) < yY 1 = x)

= F 1)(Oy)
x1

where x0 = a0(x + b0) and x1 = aI(x + b1). Assume by way of contradiction

that there are no points of type I', case that occurs only if W(y) is a.s.

constant for all y. Since E(W(y)IX ) Fn)(y) a.s. it follows that F(n) -
n n n

*.. E(W(y)) = F(y) a.s. Using this in (4.7) for n = 0 and 1 gives F(y) = F(ay).

This leads to F(y) = F(a y) for all n and if y > 0 one gets F(y) = 1 whereas

if y < 0 one gets F(y) = 0. But such F is degenerate and we reached a contra-

IS diction that proves that there exists at least one point y0 of type I' and

(a) is proved.

We prove (b) for y0 of type I (for type II1 the proof is similar). By

Theorem 3.1(a) there exist some left-unbounded intervals {I j such that

T = lim 1'X r I } a.s. and P(T) = F(y0 ). Further by Lemma 4.3
n~ nn-

SOnT = lir fX m I } a.s. exists for all n, where X+ n = a n(Y +n + b n). It

remains to prove that lim P(X E I ) = F((xy 0 ) which we shall confine

ourselves to prove for n = 1. By (4.3) and (4.4) we get

- - -. . . , ... •.. .*.. .* . X A.2 ..Zn.. .A~~st.~~~.t
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(4.8) IF(ctx) - P(Xm+V Im IF x(Y) - P(Xm I : x)0XK, 0 (dx)

But F n)(Y) = lim P(X '- ImIXn) a.s. for all n, and takin n = 0 we net
.n m-m

lim 'F (Y) - P(X I mY = x)1 = 0 for almost all x with respect to
x M m, 0 0

Using this in (4.8) completes the proof of (b).

To prove (c) notice that there is no interval of points of type 112
n+1

straddling (tnY n YO) for some n. Indeed, this is included by the fact
that ,x YO and n+l Y are of type I'. Further, if J is an interval of points

of type 112, then nj must also be an interval of points of type 112, since other-
, ^n -n -n

wise if y were of type I' with y . 0 j then ,- y c J and by (b) CL v would be of

type I'. This contradiction completes the proof.

Corollary 4.1

(a) If (--,0) does not contain any point of type I', then F(O-) = 0

(b) If (0,c-) does not contain any point of type I', then F(O) = 1.

Proof. (a) and (b) being symmetric, it will suffice to prove (a). We

show first that J = (--,0) is the maximal interval of points of type 112

containing y with y < 0. Indeed, according to Theorem 4.1 either 0 is of type

I' or there are points of type I' in (0,K:) for any c > 0, in which case

Proposition 3.1 implies that 0 is of type I' and J = (--,0). It follows that

ql = 0 and F(y) = E(W(y)) = k(y)q2 for y 0 0. Consider now the sequence

Zn a n(Y n+l + bn) and agree to attach the prime to the symbols for 1Xn
when referrinq to Z n. We claim that ' = (-,,0). Indeed, since the limit

distribution of Z , is F'(x) = F(rxx), Theorem 4.1(b) implies that iX } and
n n

{Z, must assume the same points of type 1, 11 and 112. Since J =.(--,0)
n 1*

we net ' = (-,0) as well. We show now that k'(y) = k(y) for y 0. Indeed,

ae
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* by the stationarity of the transition probabilities of {Y we get P(Zn<yiZ=x) =n nr

* P(X < yX = x) for n > m and recalling the definitions of {F(n)(y),(n  < _

{FI(n)(y)} and Theorem 3.1 we get k(y) = k'(y) for y < 0. Recall that
x

either of .W 01 or {W' 01 may be expressed as lim fY n J n a.s. for:[q2q2n n n

some intervals J }, and by Lemma 2.3(a) both W and W' are of type I. Thesen q2 q2

considerations in conjunction with Lemmas 2.2(b) and 2.3(b) boil down to

q= q2. It follows that F(y) = E(W'(y)) = k(y)q2 = E(W(y)) = F(y) for

y < 0 which is incompatible with F'(x) = F(otx) for a A 1 unless F(O-) = 0 and

the proof is finished.

Remark 4.2. An interesting consequence of Corollary 4.1 is that YoO of

type I' always exists. This property in conjunction with Theorem 4.1 leads

to the conclusion that 0 is also a point of type I'. Another consequence of

Theorem 4.1 is that any interval (-c,c) with E > 0 contains all the information

concerning the points of type 1, 11, and 112 of the real line. In particular,

if lim TX x' a.s. exists for x (-re) then X ) converges a.s.
n--n

Remark 4.3. The case t=l, /0 may be treated in a similar way, taking

into account that C, lim {X I = lir X I I a.s. where I is obtained
m m m m,n m,n

from I by replacing y with ym. + n;, (see '6]). Theorem 4.1(a) carries over

without changes. For Theorem 4.1(b) and (c), the requirement y A 0 is no

0 n n n
longer necessary whereas tY, xL a and , b are replaced by y0 + n:,

a + n.- and b + n,, respectively. Corollary 4.1 may also be extended to this

case on using a similar proof.
9_

[ j~ ____j~
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Theorem 4.2. Suppose that {Y(t): t [0,-)' is a right-continuous Markov

process with stationary transition probabilities, a(t) and b(t) some continuous,

monotone functions with lim a(t) = 0 or -' such that X(t)a(t)(Y(t)+b(t)) converoes

in distribution to a non-degenerate limit F. Assume that t << Vs, where

.•) = P(Y(t) .). Then lim a(t+s)/a(t)=r s  and lim a(t+s)(b(t+s)-b(t))=,-s
t-*co t-*o .'

for some constants P and and all s > 0. In addition, one of the followinq cases

occiirs:

(a) c)=l and =0. If in addition, lim P(X(t) < xlY(O)=y) = F(x) for all x and

y, then P(lim inf X(t) < s = P(lim sup X(t) > sI) 1, where s =inf supp F and

s2 = SUP susDo F.

(b) either pr 1 or 6 0, in which case there exists a random variable W

such that lim X(t) = W a.s. In addition, supp F is either the real line of

one of its half-lines, and F is strictly increasing on its support. If = 1, -i

F is continuous, whereas if p 1 and = 0, F is continuous except may be for

x =0.

Proof. We shall first show that lim a(t + s)/a(t) os for some constant

o and all s > 0. To this aim let us consider the skeleton chain {X(nf):n'O} -

for a certain 5 > 0. According to Lemma 4.1 lim a((n+l)6)/a(n) (
n--

exists. Take further 6' = /k for a positive integer k and write ' ( ) "

lir a((n + 1)<")/a(n'). But a((n + l) )/a(n.)
n-,,

a((n + l),L)/a((n4 1) -V')a((n - 1) -6')/a((n + 1), -26'j,...a(niS±')/a(n) and

taking n - we get ,(,) k Also, it is easy to see that if k' is a

positive integer then L(k'c') = . and therefore .(k/k) k/k(1.

r
Thus for any rational number r 0, x (r) = ,r). Consider further an
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arbitrary number s and write h(n6) a(n. + s)/a(n ). We shall show that

lim h(n, ) exists for all 0 0. Indeed, lim h(n6) exists for 6 = s as shown
n--, n-

above. Consider now s' = s/k for a positive integer k and h'(n6) = a(n6 + s')/a(nv).

As above we can show that lim h(ns) = (lim h'(ns')) k. Thus

lim h(ns) = lim a(ns' + s)/a(ns') = lim h(ns'). It is easy to see that we
n--, n-co n- o

can replace here s' by a multiple of s' and therefore lim h(n6) exists and does
n-or

not depend on 6 for 6 = rs where r is any rational and positive number. Choose
now r rs and 62 = r 2s with r1 and r2 rational such that 0 < 1 <  < 62 <

By the monotonicity of a(t) h(n6 I) < h(n6) < h(n6 2 ) and since lim h(n6 1 )=lim h(n6 2)
n-- n-o

one gets that lim h(n,) exists for all 6 > 0. We are now in a position to invoke

a result by Kinqman [18] asserting that if lina h(n,5) exists for all 6 0 and h is con

tinuous then lim h(t) also exists. We have already proved that. X (s)=c (s6) for s

rational. It is easy to see that this equality extends to any s > 0, and takinq

we get lim h(t) = s . A similar reasoning yields lim a(t+s)(b(t+s)-b(t)) =
t-*M t-*O

3s where = lim a(t + l)(b(t + 1) - b(t)). If = 1 and F = 0

Theorem 2 of [5] makes TX(t)r mixing and (a) follows from Theorem 3.2(b). Assu;Ce

now that > 1 and = 0, which accordinq to Lemma 4.2 may be achieved, if

necessary, after a re-centering. Since by Remark 4.2 any skeleton chain 4X(n):nC.

assumes at least one yo O of type I', we deduce that all points of :X(n, )' must
k

be of type I'. Indeed, by Theorem 4.1(b) k Y, is also a point of type I' for

fXn)'. If we choose ' with k / y0 for all k, then by Theorem 3.1 X(t),t.ti

where U = -n n<' assumes the same points of type I' as "X(n,) . Since i

at our disposal we conclude that {X(n,,). assumres only points of tvpe 1'.

zjrthPr. accordinn to Pemark 4.1

- . .. .,.. .,
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F(x2 ) - F(xI ) 0 implies F(p x2 ) - F(p xl) > 0 for any s, which makes F

strictly increasing on it support. Remark 4.1 also implies that if x I 0 is

a jump point for F then Sx is also a jump point for F, and s being arbitrary

we would get an uncountable set of jump points, which is impossible. Thus,

there are no jump points for F except may be for x = 0. Since F is continuous

and strictly increasing on its support, an argument already used in the course

of the proof of Lemma 2.5 yields that lim {X(tn) < x1 a.s. exists for any
n-con

continuity point x of F and this is tantamount to a.s. convergence for -X(t ).

Since {X(t)} was assumed right-continuous we conclude that {X(t)f converges a.s.

(see e.g. [22])

The case r = 1 and 0 may be treated in a similar way. Since {W=0}

is no longer invariant, 0 cannot be a jump point for F in this case.

5. A criterion for a.s. convergence. Theorem 4.1(b) asserts that under

some conditions on ; and F, convergence in distribution for .X(t) entails a.s.

convergence. In many cases of interest it is rather difficult to derive con-

vergence in distribution, such that a tractable criterion of this kind seems of

interest. We shall derive here such a criterion assuming only tiqhtness for

:X(t) and a condition on the transition probability functions P for

s (0, ) and some , 0.

A random process ;.(t). will be sa, (; to 'o tight if any subsequence thereof

contains another si bsequence convergirn in diwtribution to non-identically

FG random variable.

Further we shall consider the fnllowinc conditinns'

(A) Either I li inf a(t + s)/a(t) 1i) " uv, a) t + . ot

t -. .

i i -.f a t. t ). 'I i. . . 1: :-a:t. ....t'
. . . . t " . . . . . ] . -' "• • - ... .. ,,,..:, ,,:......... ... ,. '.'=; ..
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(B) There exist 6 > 0 and p 1 such that

lim P(IY(t + s)/Y(t) - SI>c'IX(t) 0 0) : 0
t- cn

for any c > 0 and s c (0,6).

(BI) There exist 6 > 0 and D 1 such that

lim P(Y(t + s) C (c(t)PS(l C), c(t)pS(l +E)) Y(t)= c(t)) = 1
t-*Co

for c(t) = xa(t) with x E R, c > 0 and s (0,6). The main result of this

Section is the following:

Theorem 5.1. Suppose that {Y(t): t [0,-)} is a non-negative SM Markov

process with stationary transition probabilities, X(t) = a(t)Y(t), where

{a(t)} are some constants that satisfy condition (A). Assume further that

V t <<  s for t > s where v = P(Y(t) c .). Then the tightness of {X(t)}

in conjunction with condition (BI) is a necessary and sufficient condition for

the existence of some constants {a'(t)} with lim a'(t + s)/a'(t) = s for
t-O-

all s > 0 such that {a'(t)Y(t)} converges a.s. as t - to a non-degenerate

random variable X. If F(x) = P(X < x) then supp F is either the real line or

one of its half-lines, F is continuous except may be for x = 0, and strictly

increasing on supp F.

Remark 5.1. In view of Theorem 4.1, condition (B) is necessary for a.s.

convergence when b(t) - 0. It may be shown that (B) entails (B1) if iX(t)T is

tight by reasoning in the manner of L8] (see also [7]).

In what follows we shall assume that the conditions of Theorem 5.1 are

in force. We shall need the following two Lemmas:

•.- ,-. .. . . . ' - .. . " . *-
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Lemma 5.1. Suppose that for some left-unbounded intervals {I

lim fy(t) I t a.s. exists. Then for any real s s lim Y(t) I -t-X _

lim 1Y(t + s) It I} a.s. also exists.

Lemma 5.2. Suppose that {tn I is chosen such that {X(t n converqes in

distribution to a limit F as t - . Then F is non-degenerate, and there exists
n

q with F(O) < q < 1 such that W is of type I.q

We delay the proofs of the above Lemmas to explain now the idea of the

nroof.

Outline of the proof of Theorem 5.1. We shall confine ourselves to the

case b(t) = 0 and Y(t) > 0. By Lemma 5.2 we know that there exists x such that

F(O) - P(Wq x) < 1. Since {Y(t)} was assumed stochastically monotone, we

deduce that

(5.1) W > x} = lim {Y(t) It

where It is either (--,x t) or (--,x t for some numbers {x t It will be shown

that we may assume that It 
= (-,x,xtJ such that (5.1) and Lemma 5.1 imply that

lim fY(t + s) x I a.s. exists for all s. Since condition (BI) will turn out tot t

lead to li x /x t  for some p with i 1, we get
t+s tt

(5.2) lim KY(t + s) < x = lim Y(t) _ x a.s.
t t-' t

As s in (5.2) is arbitrary, we conclude that lir x t1Y(t) x} a.s. exists

for all x, which is tantamount to a.s. converqence for {xt Y(t)
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Proof of Lemma 5.1. This l emma is a continuous time variant of Lemma 4.

Proof of Lemma 5.2. We shall assume that 1 < lim inf a(t + s)/a(t)

lim sup a(t + s)/a(t) < c, as the other case satisfying condition (A) is

reducible to this one by taking I/Y(t) instead of Y(t).

Choose x to be a continuity point of F and let F(x) = q. Then

(5.3) P(a(t n)Y(tn + s) < x) = JP(X(tn) < xIY(O) = Y)vs(dy)

where s > 0. Taking the limit as n - - yields

(5.4) F(s )  = (O)(q)v (dy) = E(G#0 ))x j y Y s

where F(s ) is the limit distribution of {a(t n)Y(t n + s)} and

G(t)(q) = lim P(X(tn) < xiY(t) = y). Assume that F is deoenerate. Thenynn

G(O)(s
G q) = 0 or 1 a.s. with respect to ,0 and since v V By (5.4)

F s (x) = F(x) and ]im inf a(t + s)/a(t) > 1 in conjunction with the tiohtness
t-,

of §X(t)} is contradicted. Thus F is non-degenerate. Suppose now that W is

a.s. constant, i.e. Gy (q) = F(x) a.s. with respect to .0 and , and cs above

we get F(S)(x) = F(x) for any s > 0, which is impossible. Thus W is not a.s.o

constant and therefore we may choose a point z, which is a continuity point of

the distribution function of W , such that 0 - P(W_ . z) - i. Then by on aireaGy
q C

familiar argument we know that there exist some left-unboundec intervals Jt

such that lim Y(t) J J Wq > z} a.s. and if P(Wq z) - F(O), Lemma 2.2

concludes the proof. Assume therefore that F' .z)._ F(O). APccordinq to

Theorem 2.1 this situation corresponds to the case of W of type Ii withq
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1). and P(W ) + PW k =I. Choose z k . Since by Le'mma 5.1q q
S-Wq lim {Y(t + s) JtI a.s., if we take into account the assumption

lirm inf a(t + s)/a(t) 1 we get Jt~s -  for t large enough and (- SW =l W =- ,

.:&¢,ve.ver, we know from [6] that P(W = l),l entails P(,s :W=I )<I Since admitsL q q

v two values with positive probability, Lemma 2.3(b) makes it impossible that

qK 1= >IWqri). Thus W q=l} is an invariant set, and since .W q=kq

is its complementary set it must also be invariant. Therefore W is an invariantp

random variable. It follows that E(GvO)(q) = E(G(s )  F(x) and (5.4) implies5 5

FS)(x ) = F(x) case which we considered before and turned out to be absurd.

Proof of Theorem 5.1. Step 1. We first show that if A = lim {Y(t) Jt! a.s.
t_ < t

where F(O) < lim P(Y(t) r Jt) < 1 then P(,cSA) > P(A) for any s 0. The
t

existence of such .'A was ensured by Lemma 5.2. Recall that = lim inf a(t+s)/a(t)>l
t--,

and obviously lim inf a(t + ks)/a(t) > r, for any k 0. 0. Notice further that if

is the ricght end-point of J then, if necessary extracting a further

sDsequence of !tn , we may assume that a(t ) cxt where c is a positive
n

s. ..tan.. The abcve argur",ent boils down to P(; ks.,,) = Y. .. P.sI nn
n -<, n

,. sup P/(LrC) _ C ) F(c Ar). As F is a proper distril.tior, -d :ay
0-

V l rpe enouoh such that F(C ) > q. Thus there is a k such t.jit

D ks.) p,.. owever for any s C ,- we nave aIread, noti.ed ir

t., sor , o the aroo -f !e ,[ma 5.2. This :uaKs i .. ) .. for s + ei

'n' Yossjbi! tY -Ind rC,*iudeQ t e arqument
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Step 2. We show now that if {s n } is a sequence of positive numbers with
s

lim s = 0 then lim O nA = A a.s. for any A T T, where T is the tail o-field
n-)oo n-o

of {Y(t): t c [0,c)}. Indeed, fY(t)} was assumed to be right-continuous, in

which case it is known that Ft = lim F (see e.g. [22]) where F is the
n~ t

s
o-algebra aenerated by {Y(u): 0 < u < t1. Since P(O nAIFt+sn) = P(AIFt) for

Ft) s

t > 0, we get P(A'IF = P(AIFt) with A' = lim 0 nA on letting n- . Because
n-5

GSA is decreasing in s and 0SA A for s > 0 we conclude that A = A' a.s.

Step 3. We shall next show that {Y(t)/xt} converges a.s. as t- for some

constants {xt}. Indeed, choose q E (0,1) such that F(xo) = q for a continuity

point x0 of F. Then Wq must be of type I. Indeed, assume the contrary. Then

by Lemmas 5.2 and 2.3, W must assume at least one positive value out of P(W = 0)

q q

where A0  1 q > 0} = lim {X(tn) C t } a.s. for some left-unbounded t . By
n n

Steps l and 2 we deduce that one may find A6 with A6= A and s -. 0 such

that F(xo) < P(A') < P(A). By Lemma 5.1 we know that A' = lim {X(tn )6Jt
n- n

for some left-unbounded intervals {J I and according to Lemma 2.2(b) W q,,

with q' =P(A), is of type I, which contradicts Lemma 2.3(b) and proves that
W is of type I. Thus x0 is a point of type I and therefore there exist some

Sq P(Yt)U I {~n ~nX}

left-unbounded intervals {I I with right-end points ixtI such thatt
P= = lim {Y(t) C It} a.s. and P(A) = F(x0). It is further easy to see that

40(5.5) lim P({Y(t n)  I t  A {Y(t n) - a(t n )xO}) =0
Sn

i-,- , . - - .* - ..- -. .-,~ -.- -. . ; 1 . - . 2 . . .. , • .. - ' - , K' i " * --.
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It is obvious that lrn {Y(t) I) t lrn iY(t n) I. t urn {Y(t n+s)'It +s a.s.
n n-x t n-s

and (5.5) leads to

(5.6) lim P((Y(t n +5)Ct +s1 A {Y(t)n < a(t n )x 0 I)=0
n

On the other hand, condition (Bi) implies

(5.7) lrn Ps4a(t n)(x0 -c), (-c-,a(t n )Xops)) =

and

(5.8) lim P5'a (t n)(X0 + F-), (--c,a(t n)Nos)) =0

Stochastic monotonicity applied to (5.7) and (5.8) yields

(5.9) lim Ps(x,(-cc,a(t n)x0ps)) =

uniformly for x < a(t n)(X 0~ n

(5.10) lim P (x,(-c-,a(t )x p)s n 0P
n-+cn

uniformly for x > a(t )(Xx 0+ E

Taking into account (5.9) and the continuity of F at x0 we qet

*(5.11) F(x 0  lirn P s(x ,(-- a(t n ) xops)v (dx)
n-Ko n

{x < a(t x 0

which is easily seen to be equivalent to

4
(5.12) lrn P(Y(t n) <i a )x x0) =r P({Y(t n + s) < a(t n)x on 5YY(t n)<a(tn x0)

*where we have used the equality

P . P (x,(--,a (t n)xor )vt n(dx) P({Y(tn + S) a( tnxo ' s -,y(t )a(t n x 0 )

f41t)

n 0 . . * . .
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Proceeding in the same way as above, but using (5.1) instead of (5.9) we oet

(5.13) lim P(Y(tn )>a(tn)XO) = lrn P({Y(tn + s)>a(tno)xoS}n{Y(tn )>a(tn)XO})
n-co n n0 n-o nnt nx

It is now easy to see that (5.6), (5.12) and (5.13) yield

5(5.14) lim P({Y(t n + s)cIt +S) A {Y(t n+s) < a(tn)xoQS}) = 0
n-*w n

Because x0 was chosen to be an arbitrary continuity point of F, we get
=-S

lim x t +S /xt 0 and since {t n} was assumed to be an arbitrary sequence with
n-* n n

lim tn = such that {X(tn )} converges in distribution we get lim xt+s/x t  ' -S

0n-- t-)0

for any s c (0,6). It is easy to see that the latter equality implies

-S
lim x t+s /xt  p for any real s. Recall that lim {Y(t+s) E I t a.s. exists

for all s and the above considerations boil down to the existence of

5 5
lim {Y(t) < P0xt} a.s. But p may take any value as s is at our disposal.

It follows that {Y(t)/xt} converges a.s. to a limit X as t-, and X was shown

- to be non-degenerate by Lemma 5.2. Since Theorem 4.1 applies, its characteriza-

tion of F carries over to this case.

SStep 4. To prove that the conditions of Theorem 5.1 are necessary, notice

first that tightness is an obvious prerequisite for convergence in distribution.

. Condition (Bl) is obviously implied by the a.s. convergence of {Y(t)/xtI (as

well as its equivalent form (B)) if we take i- iccount Theorem 4.1.

6. Applications.Diffusions. It has been noticed by several authors that

diffusions are SM. Indeed, the birth-and-death process is SM(see e.g. [17]).

Since by a result of Stone [26] any diffusion is a limit of birth-and-death processes

S:

. . - . \ * ** * * . .- - .
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it follows that diffusions are SM. Next we shall give an a.s. converqence

criterion for Markov processes assuming second moments that may be applied to

diffusions. We need consider the following.

Condition (B2). There exist 6 > 0 and P 1 such that

lim Var(X(t + s)IX(t) = c(t)) 0
t-)co min 2 [pSc(t)(l+r)-E(X(t+s)IX(t)=c(t))],-[pSc(t)(l-c)-E(X(t+s)IX(t)=c(t))]J

for c(t) = xa(t) with x E R, c > 0 and s E (0,6)

In what follows we shall write u(t) - v(t) whenever lim u(t)/v(t)=l.
t- o2

Theorem 6.1. Suppose that {Y(t):t E [0,-)} is a right-continuous SM Markov

process with stationary transition probabilities, vt << Vs for t > s,

E(X(t)) - apt and Var (X(t)) - bp2t for some constants a,b and P with b > 0 and

o / 1, and that Condition (B2) holds. Then {Y(t)/p } converges a.s. as t -

to a random variable X. If F(x) = P(X < x) then supp F is either the real line

or one of its half-lines, F is continuous except may be for x = 0, and strictly

increasing on supp F.

Proof. We shall show that the conditions of Theorem 5.1 are verified.

Indeed, by well-known properties for sequences of distribution functions (see

t
e.g. L22]) any subsequence of {X(t)/p } contains another subsequence whose

limit distribution's variance equals b and is therefore non-degenerate. Thus

tightness follows. It remains to show that (B2) implies (Bl). Notice that

P(X (a,b)) = P(X - E(X) c (a - E(X), b - E(X))

> P(X c (-c,c))

. . . - . . --4- . - . - ' . . , • .. . . . . . . . - . . - .. . . -.
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where c = min(b - E(X), -(a - E(X)). Specializing X, a and b to the quantities

J that appear in (Bi) and applying the Chebyshev's inequality we get that (B2)

implies (B1) and complete the proof. Examples of diffusions to which Theorem

6.1 applies include the Ornstein-Uhlenbeck processes (see e.g. [16]) and some

-" diffusion processes that approximate Galton-Watson processes (see [11], L13]

• and [21]). In both cases E(Y(t)IY(O) = x) = xe6t and Var (Y(t)).-be 2at with

* b > 0 and > 1. Such results for Ornstein-Uhlenbeck processes are derived by

using some heavy machinery developed for diffusion processes (see e.g. [24]).

* For branching diffusions some analytic tools are available (see [3]). However,

even small perturbations in the transition probability functions of such

processes may destroy the martingale properties on which their study is based,

whereas the conditions of Theorem 6.1, being of the limit type, seem to be more

robust to such changes.

Branching processes. We shall derive a limit theorem for a branching

model in which the offspring of the individuals are no longer independent,

but strictly stationary. Stochastic monotonicity methods seem to allow one to

establish results where the classical proofs based on independence break down.

We shall pare the assumption down to the bare essentials so that our conditions

will be formulated in terms of properties that are used in establishing stochastic

monotonicity results. We shall neither bother here with deriving assumptions

on the process that entail such conditions nor with finding minimal conditions

* ensuring our results. A more comprehensive study of such processes will be

taken up elsewhere. In [7] we studied SM branching models of [3], L13J and [25].

Suppose that {Z t [0,,-)} is a Markov process such that

* zt

(6.1) t+u  u if Zt 0 and Zt+u  0 if Zt 0

u i =1 A S
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t~iwhere Zt  stands for the number of offspring at time t+u of the i-th of thet,u

Z individuals alive at time t.
t

t~iIn a Galton-Watson process, {Zt i are assumed i.i.d. and independent of Zt't,u

Consider next the following conditions
8t

C(l) The sequence {Zt 'i; i = 1,2,...} is independent of Zand is distributedt,u

like the strictly stationary and ergodic process {( u) ; i = 1,2,...1

C(2) P(lim Zt 
= 0) = 1 - P(lim Zt  0)

t-).o t-*co

C(3) For any {xu I with lim P(Ztl > x E (0,1) one gets
u U-W t,u u

(6.2) lim P({Z u'l > x I U {Z ,u'2 > Xu} > lim P({Z ,ul>
P{tu {tu u t,u uU~o U-*0o

Theorem 6.2. Suppose that {Zt  is a right-continuous process that satisfies

conditions C(l), C(2) and C(3), and E(Zt) < -. Then there exist some norming

constants {c(t)) with lim c(t+s)/c(t) = e for some x > 1 such that
t-)o0

{Z(t)/c(t)} converges a.s. to a random variable W. If F(x) = P(W < x), then F

is continuous and strictly increasing on (0,-).

x z~Proof. Since P (x,(--,y]) = P(X Ztu < y) we can easily see that

Su i=l

increasing x means adding more non-negative variables to the sum, which of

course decreases its probability of being smaller or equals x. Thus {X t

is SM. Notice now that (6.1) and C(l) lead to E(Zt+) = E(Zt)E(Z ) whereas

C(l) and C(2) yield E(Zt) > 1. Thus there must exist ( > 1 such that

E(Zt) = eat for any t > 0.

Birkoff's ergodic theorem is easily seen to imply (Bl) and also (B) in

the form

. .ill . .- .* ..- ,. .,. ,
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(6.3) lim P( !Zt+ /Zt -e > Z 0) 0

for any c > 0. If we define a(t) such that a (t) is the y-quantile of

the distribution function of Zt for P(lim Zt  0) < y < 1 then by (6.3) wett

conclude that 1 lim inf a(t+s)/a(t) < lim sup a(t+s)/a(t) < ., so that

condition (A) holds. It is easy to see, by the way {a(t)} were defined, that

any weakly convergent subsequence of {a(t)Zt} must have a non-degenerate

limit distribution F. To prove tightness for La(t)Zt} we need to show that F(4-)=I.

Assume the contrary and choose {u I with lim un = such that {a(t+u )Z
n n n t+un-  °  n

converges in distribution to F and {a(t+u )Z t+. } converges in distribution to
n

a limit G. Notice further that (6.1) leads to

DzV t

(6.4) W Wt
i=l

D z
where = means that W andi~ W have the same distribution, whereas W is

1t

distributed according to F and {W t i} are distributed accordina to G. Further

(6.4) leads to

n
LID (6.5) P(W = -) = .P( U W t i = -)P(zt = n)

n=l i(

Since {a(t)} satisfies condition (A) we get P(W = c) = P(Wti ) and by

* C(3) the right-hand side of (6.5) would be larger than its left-hand side,

which is absurd. Thus P(W : o) 0 and the condition of Theorem 5.1 are

checked.

' As we mentioned before, the conditions of Theorem 6.2 may be relaxed.

6

, . .. * . - , ..
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Perturbation factors may be allowed in (6.1) whereas some kind of dependence_t I

for {Zt } on Z in the manner of [19] and L20J may supercede condition C(l).t'u
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